Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels
نویسندگان
چکیده
BACKGROUND Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. RESULTS In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. CONCLUSION In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.
منابع مشابه
Muscarinic modulation of voltage-dependent Ca2+ channels in insulin-secreting HIT-T15 cells.
Potentiation of insulin secretion from pancreatic β-cells by acetylcholine requires ongoing cyclic electrical activity initiated by other depolarizing secretagogues. Patch-clamp recordings in glucose-free solutions were made from the clonal β-cell line HIT-T15 to determine whether the muscarinic agonist bethanechol (BCh) modulated voltage-dependent Ca2+ channels independent of effects on membra...
متن کاملMuscarinic modulation of voltage-dependent Ca21 channels in insulin-secreting HIT-T15 cells
Love, Jeffrey A., Neil W. Richards, Chung Owyang, and David C. Dawson. Muscarinic modulation of voltagedependent Ca21 channels in insulin-secreting HIT-T15 cells. Am. J. Physiol. 274 (Gastrointest. Liver Physiol. 37): G397– G405, 1998.—Potentiation of insulin secretion from pancreatic b-cells by acetylcholine requires ongoing cyclic electrical activity initiated by other depolarizing secretagog...
متن کاملGlibenclamide inhibits islet carnitine palmitoyltransferase 1 activity, leading to PKC-dependent insulin exocytosis.
Hypoglycemic sulfonylureas such as glibenclamide have been widely used to treat type 2 diabetic patients for 40 yr, but controversy remains about their mode of action. The widely held view is that they promote rapid insulin exocytosis by binding to and blocking pancreatic beta-cell ATP-dependent K+ (KATP) channels in the plasma membrane. This event stimulates Ca2+ influx and sets in motion the ...
متن کاملThe aminoguanidine carboxylate BVT.12777 activates ATP-sensitive K+ channels in the rat insulinoma cell line, CRI-G1
BACKGROUND 3-guanidinopropionic acid derivatives reduce body weight in obese, diabetic mice. We have assessed whether one of these analogues, the aminoguanidine carboxylate BVT.12777, opens KATP channels in rat insulinoma cells, by the same mechanism as leptin. RESULTS BVT.12777 hyperpolarized CRI-G1 rat insulinoma cells by activation of KATP channels. In contrast, BVT.12777 did not activate ...
متن کاملTaurolithocholate-induced Ca2+ release is inhibited by phorbol esters in isolated hepatocytes.
The monohydroxy bile acid taurolithocholate (TLC) causes a rapid and transient increase in free cytosolic Ca2+ concentration ([Ca2+]i) in suspensions of rat hepatocytes similar to that elicited by the InsP3-dependent hormone vasopressin. The effect of the bile acid is due to a mobilization of Ca2+, independent of InsP3, from the endoplasmic reticulum (ER). Short-term preincubation of cells with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Pharmacology
دوره 1 شماره
صفحات -
تاریخ انتشار 2001